45 research outputs found

    Current sustainability and electromigration of Pd, Sc and Y thin-films as potential interconnects

    Get PDF
    The progress on novel interconnects for carbon nanotube (CNT)-based electronic circuit is by far behind the remarkable development of CNT-field effect transistors. The Cu interconnect material used in current integrated circuits seems not applicable for the novel interconnects, as it requires electrochemical deposition followed by chemical-mechanical polishing. We report our experimental results on the failure current density, resistivity, electromigration effect and failure mechanism of patterned stripes of Pd, Sc and Y thin-films, regarding them as the potential novel interconnects. The Pd stripes have a failure current density of (8 similar to 10)x10(6) A/cm(2) (MA/cm(2)), and they are stable when the working current density is as much as 90% of the failure current density. However, they show a resistivity around 210 mu O.cm, which is 20 times of the bulk value and leaving room for improvement. Compared to Pd, the Sc stripes have a similar resistivity but smaller failure current density of 4 similar to 5 MA/cm(2). Y stripes seem not suitable for interconnects by showing even lower failure current density than that of Sc and evidence of oxidation. For comparison, Au stripes of the same dimensions show a failure current density of 30 MA/cm(2) and a resistivity around 4 mu O.cm, making them also a good material as novel interconnects.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000208414400008&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=8e1609b174ce4e31116a60747a720701Nanoscience & NanotechnologyMaterials Science, MultidisciplinaryPhysics, AppliedSCI(E)2ARTICLE3184-189

    UV/Ozone treatment to reduce metal-graphene contact resistance

    Full text link
    We report reduced contact resistance of single-layer graphene devices by using ultraviolet ozone (UVO) treatment to modify the metal/graphene contact interface. The devices were fabricated from mechanically transferred, chemical vapor deposition (CVD) grown, single layer graphene. UVO treatment of graphene in the contact regions as defined by photolithography and prior to metal deposition was found to reduce interface contamination originating from incomplete removal of poly(methyl methacrylate) (PMMA) and photoresist. Our control experiment shows that exposure times up to 10 minutes did not introduce significant disorder in the graphene as characterized by Raman spectroscopy. By using the described approach, contact resistance of less than 200 {\Omega} {\mu}m was achieved, while not significantly altering the electrical properties of the graphene channel region of devices.Comment: 17 pages, 5 figure

    Self-Retracting Motion of Graphite Microflakes

    Full text link
    We report the observation of a novel phenomenon, the self-retracting motion of graphite, in which tiny flakes of graphite, after being displaced to various suspended positions from islands of highly orientated pyrolytic graphite, retract back onto the islands under no external influences. Our repeated probing and observing such flakes of various sizes indicate the existence of a critical size of flakes, approximately 35 micrometer, above which the self-retracting motion does not occur under the operation. This helps to explain the fact that the self-retracting motion of graphite has not been reported, because samples of natural graphite are typical larger than this critical size. In fact, reports of this phenomenon have not been found in the literature for single crystals of any kinds. A model that includes the static and dynamic shear strengths, the van der Waals interaction force, and the edge dangling bond interaction effect, was used to explain the observed phenomenon. These findings may conduce to create nano-electromechanical systems with a wide range of mechanical operating frequency from mega to giga hertzs

    Spin Manipulation by Creation of Single-Molecule Radical Cations

    Get PDF
    All-trans-retinoic acid (ReA), a closed-shell organic molecule comprising only C, H, and O atoms, is investigated on a Au(111) substrate using scanning tunneling microscopy and spectroscopy. In dense arrays single ReA molecules are switched to a number of states, three of which carry a localized spin as evidenced by conductance spectroscopy in high magnetic fields. The spin of a single molecule may be reversibly switched on and off without affecting its neighbors. We suggest that ReA on Au is readily converted to a radical by the abstraction of an electron.Comment: 5 pages, 3 figures, accepted for publication in Phys. Rev. Let

    High-mobility graphene on liquid p-block elements by ultra-low-loss CVD growth

    Get PDF
    The high-quality and low-cost of the graphene preparation method decide whether graphene is put into the applications finally. Enormous efforts have been devoted to understand and optimize the CVD process of graphene over various d-block transition metals (e.g. Cu, Ni and Pt). Here we report the growth of uniform high-quality single-layer, single-crystalline graphene flakes and their continuous films over p-block elements (e.g. Ga) liquid films using ambient-pressure chemical vapor deposition. The graphene shows high crystalline quality with electron mobility reaching levels as high as 7400 cm2 V−1s−1 under ambient conditions. Our employed growth strategy is ultra-low-loss. Only trace amounts of Ga are consumed in the production and transfer of the graphene and expensive film deposition or vacuum systems are not needed. We believe that our research will open up new territory in the field of graphene growth and thus promote its practical application

    Broadband optical properties of large-area monolayer CVD molybdenum disulfide

    Get PDF
    Recently emerging large-area single-layer MoS[subscript 2] grown by chemical vapor deposition has triggered great interest due to its exciting potential for applications in advanced electronic and optoelectronic devices. Unlike gapless graphene, MoS[subscript 2] has an intrinsic band gap in the visible which crosses over from an indirect to a direct gap when reduced to a single atomic layer. In this paper, we report a comprehensive study of fundamental optical properties of MoS[subscript 2] revealed by optical spectroscopy of Raman, photoluminescence, and vacuum ultraviolet spectroscopic ellipsometry. A band gap of 1.42 eV is determined by the absorption threshold of bulk MoS[subscript 2] that shifts to 1.83 eV in monolayer MoS[subscript 2]. We extracted the high precision dielectric function up to 9.0 eV, which leads to the identification of many unique interband transitions at high symmetry points in the MoS[subscript 2] momentum space. The positions of the so-called A and B excitons in single layers are found to shift upwards in energy compared with those of the bulk form and have smaller separation because of the decreased interactions between the layers. A very strong optical critical point predicted to correspond to a quasiparticle gap is observed at 2.86 eV, which is attributed to optical transitions along the parallel bands between the M and Γ points in the reduced Brillouin zone. The absence of the bulk MoS[subscript 2] spin-orbit interaction peak at ~3.0 eV in monolayer MoS[subscript 2] is, as predicted, the consequence of the coalescence of nearby excitons. A higher energy optical transition at 3.98 eV, commonly occurring in bulk semiconductors, is associated with a combination of several critical points. Additionally, extending into the vacuum ultraviolet energy spectrum are a series of newly observed oscillations representing optical transitions from valence bands to higher conduction bands of the monolayer MoS[subscript 2] complex band structure. These optical transitions herein reported enhance our understanding of monolayer MoS[subscript 2] as well as of two-dimensional systems in general and thus provide informative guidelines for MoS[subscript 2] optical device designs and theoretical considerations.China. Ministry of Science and Technology (Grant 2011CB921904)China. Ministry of Education (Grant 113003A)National Natural Science Foundation (China) (Grant 61321001)Municipal Science & Technology Commission. Beijing Natural Science Foundation (grant Z141100003814006)National Science Foundation (U.S.) (STC Center for Integrated Quantum Materials Grant DMR-1231319

    Controllable sliding transfer of wafer‐size graphene

    Get PDF
    The innovative design of sliding transfer based on a liquid substrate can succinctly transfer high‐quality, wafer‐size, and contamination‐free graphene within a few seconds. Moreover, it can be extended to transfer other 2D materials. The efficient sliding transfer approach can obtain high‐quality and large‐area graphene for fundamental research and industrial applications
    corecore